
The Complexity Classes P and NP 

consider another 4 problems. 

• Multiply 7 by 5 and check that it equals 35. 

• Multiply 11 by 17 and check that it equals 187. 

• Multiply 29 by 83 and check that it equals 2407. 

• Multiply 337 by 263 and check that it equals 88,631. 

Each subsequent question (bigger input size) takes more time to solve 

than the previous one, but the amount of time is growing more slowly.  

 

Consider the following 4 problems.  

• Find two whole numbers bigger than 1 whose product is equal to 35. 

• Find two whole numbers bigger than 1 whose product is equal to 187. 

• Find two whole numbers bigger than 1 whose product is equal to 2,407. 

• Find two whole numbers bigger than 1 whose product is equal to 88,631. 

each subsequent question (bigger input size) is harder and will 

take more steps and consequently more time to solve 

 

We denote the number of digits of the input number by n, so in the 

first set of questions we start with n = 2 and go up to n = 5. 

let T (n) denotes the time, or equivalently the number of steps, to solve a 

question of input length n.  

Complexity looks at how the size of T (n) grows as n grows.  

In particular, we ask if we can find some positive numbers k and p such 

that 𝑇(𝑛) ≤ 𝑘𝑛𝑝 for every value of n.  

If we can, we say that the underlying problem can be solved in 

polynomial time.  

If, on the other hand, we can find positive number k and a number c  1, 

such that 𝑇(𝑛) > 𝑘𝑐𝑛  for every value of n, we say that the problem 

requires exponential time.  



Note: polynomial versus exponential growth: Given enough time, 

something with exponential growth will grow much faster than 

something with polynomial growth. 

 In computer science, questions that can be solved in polynomial time are 

considered easy (tractable), but those with exponential growth are 

hard (not tractable). 

There is a hope to solve, most polynomial time with a large value of n at the moment, in a few years. 

On the other hand, there is no hope to solve a hard problem problem, once the size has increased 

beyond what we can currently tackle , in the foreseeable future.  So, increasing the size of n even 

slightly more, produces a problem that becomes much harder. 
Back to two sets of problems.  

The second set involves multiplying two numbers together, but this is 

easy to do. As n increases it does take more time, but it can be shown that 

this is a polynomial time problem. 

 

What about the first set of questions?  

If you tried tackling them, you will probably believe that the amount of 

time needed is exponential in n and not polynomial in n, but is this the 

case? Everybody thinks so, but, on the other hand, nobody has found a 

proof. 

 

complexity class P: If a problem can be solved in polynomial. 

So, the problem that consists of multiplying two numbers together 

belongs to P.  

complexity class NP (nondeterministic polynomial): 

note: NP refers to certain types of Turing machines that are called 

nondeterministic Turing machines 

Instead of solving the problem, someone gives you the answer and you 

just have to verify that the answer is correct. If this process of verifying 

that an answer is correct takes polynomial time.  



The problem of factoring a large number into the product of two primes 

belongs to NP. 

every problem that is in P is also in NP:  

since, verifying that an answer is correct is easier than actually finding 

the answer,  

but what about the converse question. Does every NP problem belong 

to P? Is it true that every question whose answer can be verified in 

polynomial time can also be solved in polynomial time?  

nobody has managed to prove that P is not equal to NP. The problem of 

factoring a large number into the product of two primes belongs 

to NP, and we don’t think it belongs to P, but nobody has been able to 

prove it. 

The problem of whether NP is equal to P is one of the most important 

in computer science. In 2000, the Clay Mathematics Institute listed seven 

“Millennium Prize Problems,” each with a prize of a million dollars. The P 

versus NP problem is one of the seven. 

A formal summary: 

The class P consists of all those decision problems that can be solved 

on a deterministic sequential machine in an amount of time that 

is polynomial in the size of the input;  

the class NP consists of all those decision problems whose positive 

solutions can be verified in polynomial time given the right 

information, or equivalently, whose solution can be found in 

polynomial time on a non-deterministic machine [wikipedia.org 

2004]. 

Where: 

† A decision problem is a function that takes an arbitrary value or 

values as input and returns a yes or a no. Most problems can be 

represented as decision problems. 

† Witnesses are solutions to decision problems that can be checked 



in polynomial time. For example, checking if 7747 has a factor less 

than 70 is a decision problem. 61 is a factor (61 £ 127 = 7747) which 

is easily checked. 

So we have a witness to a yes instance of the problem. Now, if we 

ask if 7747 has a factor less than 60 there is no easily checkable 

witnesses for the no instance [Nielsen, M. A. 2002]. 

† Non deterministic Turing machines (NTMs) differ from normal 

deterministic 

Turing machines in that at each step of the computation the Turing 

machine can ”spawn” copies, or new Turing machines that work in 

parallel with the original. It’s a common mistake to call a quantum 

computer an NTM, as we shall see later we can only use quantum 

parallelism indirectly. 

† It is not proven that P ≠NP it is just very unlikely as this would 

mean that all problems in NP can be solved in polynomial time. 

 

Are Quantum Algorithms Faster Than Classical Ones? 

Most quantum computer scientists believe that P is not equal to NP. They 

also think that there are problems that are in NP but not P, which a 

quantum computer can solve in polynomial time. This means that 

there are problems that a quantum computer can solve in polynomial 

time that a classical computer cannot.  

To prove this, however, involves the first step of showing that some 

problem belongs to NP but not to P, and as we have seen, nobody knows 

how to do this.  

How can we compare the speed of quantum algorithms to classical 

algorithms?  

There are two ways: theoretical, and practical. 

• The theoretical way is to invent a new way of measuring 

complexity that makes it easier to construct proofs.  



• The practical way is to construct quantum algorithms for solving 

important real world problems in polynomial time that we believe, 

but have been unable to prove, do not belong to P. 

 

 

An example of the practical approach is Shor’s algorithm for factoring the 

product of two primes. Peter Shor constructed a quantum algorithm that 

works in polynomial time. We believe, but have been unable to prove, 

that a classical algorithm cannot do this in polynomial time 

First approach: 

Query Complexity 

Most quantum algorithms that concern evaluating functions.  

E.g.  

• Deutsch and Deutsch-Jozsa algorithms consider functions that 

belong to two classes.  

• Simon’s algorithm concerns periodic functions of a special type. 

Again we are given one of these functions at random, and we have 

to determine the period. 

 

 

To run these algorithms we have to evaluate the functions.  The function 

(aka a black box or an oracle).  

The query complexity counts the number of times that we have to 

evaluate the function to get our answer.  

So we are querying the black box or the oracle to evaluate the 

corresponding function. The point of this is that we don’t have to worry 

about how to write an algorithm that emulates the function, so we don’t 

have to calculate the number of steps that function takes to evaluate the 

input. We just keep track of the number of questions. This is much simpler.  



Complexity Classes 

In complexity theory, the main classification is between problems 

that take polynomial time to solve (efficient) and those that need 

more than polynomial time. 

Polynomial time algorithms are regarded as being practical even for 

very large values of n, but non-polynomial time algorithms are 

regarded as being infeasible for large n. 

Class P:  

Problems that classical algorithms can solve in polynomial time.  

Class QP (EQP, for exact quantum polynomial time):  

Problems that quantum algorithms can solve in polynomial time.  

Usually when we use these terms we are referring to the 

number of steps that an algorithm takes,  

 query complexity  a new way of measuring complexity that counts 

the number of questions we need to ask an oracle.  The oracle that 

prepares the “query” reply requires to be implemented efficiently 

(aka uniformaity). 

Problems that separate P and QP :  e.g. the Deutsch-Jozsa problem 

is not in the class P, but belonged to QP for query complexity. (The 

constant function is a degree 0 polynomial.) This is sometimes 

described as saying that the Deutsch-Jozsa—it is a problem 

that belongs to QP but not to P for query complexity. 

 

classical algorithms : worst-case analysis  

Assume for Deutsch-Jozsa problem. Determine given a function that 

takes 10 inputs and is either balanced or constant. There are 

210= 1024 possible inputs. The worst-case scenario is when the 

function is balanced, but we get the same answer for the first 512 



evaluations, and then on the 513th evaluation we get the other 

value.  

How likely is this to happen? 

If the function is balanced, for each input value we are equally likely 

to get either a 0 or a 1. This can be compared to tossing a fair coin 

and obtaining a head or a tail. How likely is it to toss a fair coin 512 

times and get heads every time? The answer is(
1

2
)

512
 

 

bounded-error complexity classes. we look at algorithms that can 

answer the question within our bound for error. 

Assume for Deutsch-Jozsa problem, we need at least a 99.9 percent 

success rate, or equivalently an error rate of less than 0.1 percent. 

Probability of getting 0:  

If a function is balanced the probability of evaluating the function 11 

times and getting 0 every time is (0.5)11 =0.00049 to five decimal places. 

Probability of getting 1:  

Similarly, the probability of obtaining 1 every time is 0.00049.  

Thus the probability of obtaining the same answer (all 0 or all 1), 11 

times in a row when the function is even is just less than 0.001 ( 

0.00049 + .00049) . 

 So for a bound on the probability of error less than 0.1 percent, we 

run at most 11 function evaluations. If during the process we get 

both a 0 and a 1, we stop and favors the balanced. If all 11 

evaluations are the same, we will say the function is constant. We 

could be wrong, but our error rate is less than our chosen bound.  

This argument works for any n. In every case, we need 11 function 

evaluations at most. 



class BPP (bounded-error probabilistic polynomial time)Problems: 

problems that the classical algorithms can solve in polynomial time 

with the probability of error within some bound  

 The Deutsch-Jozsa problem is in the class BPP. 

Note: Is a problem could be in BPP for one bound on the probability 

of error, but not in the class BPP for a smaller bound? No 

If the problem is in the class BPP, it will be there for every choice of 

the bound. 

Class BQP (bounded-error quantum polynomial time) problems: 

Problems that quantum algorithms can solve in polynomial 

time with the probability of error within some bound  

Simon’s algorithm shows the problem belongs to BQP for query 

complexity (thus Simon’s algorithm is not in class QP) 

Simon: we need to keep sending qubits through the circuit until we 

have 𝑛 − 1 linearly independent equations. in the worst case this 

process can go on forever.  

So, probabilistically, we may calculate N so that (
1

2
)

𝑁
 is less than a 

given error bound.  

It can be shown that if we run the circuit 𝑛 + 𝑁  times, the 

probability of the 𝑛 + 𝑁 equations containing a system n − 1 

linearly independent equations is greater than 1 − (
1

2
)

𝑁
 . 

Simon’s algorithm synopsis:  

• First we decide on a bound on the probability of error and 

calculate the value N. Again, the number N does 

not depend on n. We can use the same value of N in each case.  



• We run Simon’s circuit 𝑛 + 𝑁  times. The number of queries is  

𝑛 + 𝑁  , which, since N is fixed, is a linear function of n. (We 

make the assumption that our system of 𝑛 + 𝑁 equations 

contains n − 1 independent vectors. We could be wrong, 

but the probability of being wrong is less than the bound that 

we chose.) 

• Then we solve the system of 𝑛 + 𝑁  equations using a classical 

algorithm. The time taken will be quadratic in 𝑛 + 𝑁  , but 

because N is a constant, this can be expressed as a quadratic in 

n. 

The algorithm as a whole contains the quantum part that takes 

linear time added to the classical part that takes quadratic 

time, giving quadratic time overall.  

Simon’s problem separates BPP and BQP for query complexity: 

We showed that the classical algorithm (deterministic), in the worst 

case, took 2𝑛−1 + 1  function evaluations—this is exponential in n, 

not polynomial, so the problem definitely does not belong to P. It can 

also be shown that classical algorithm (probabilistic),  even if we 

allow a bound on the probability of error the algorithm is still 

exponential, so the problem does not belong to BPP.  

Deutsch-Jozsa (nielsen book page 36) 



 
 

Hadamard on n qubits 

 

 

 



 
 

 

Details of matrix form  

 



 

𝛼|0⟩ + 𝛽|1⟩  
𝐻
→ 𝛼|+⟩ + 𝛽|−⟩ 

2 Qubits 
 

 

 
 

 

 

 

 

 

 

 

 



 

Synopsis

 



 

Prove the following  

 



 

 

Quantum Parallelism 



 
 

 



 

 



 

Quantum circuit for DJ 



 

Implementing DJ 



 



 

 



 
Revised Version 

 



 



 



 



 



 



 



 



 
 

 



 

 



 

 



 

Bernstein-Vazirani Algorithm 
Now consider the following function. 

 
The promise is that f conforms to the above 

constraints.  

Our task is to determine the values of a and b. (We 

note that the Bernstein-Vazirani promise is a 

restriction on Deutsch-Josza, but the question is 

harder to solve.)  



With a classical deterministic algorithm, n + 1 

queries are required; 

1 to determine b (query with x = 0), and n to 

determine a.  

f(000:::0n) = b 

f(100:::0n) = a1 

f(010:::0n) = a2 

. . 

f(000:::1) = an 

 

(We also note that is, classically, the optimal 

algorithm, as n + 1 bits of information are required.) 

A classical randomized algorithm will do no better, 

also requiring n + 1 queries. 
Exercise . Show that any classical randomized algorithm that 

solves the Bernstein-Vazirani problem with reasonable error 

makes at least n + 1 queries. 



 

                          

  

      

                                     



 

                          

        



 
(a+x).y   a=x   a+x=0   a≠x a+x=1 

            



 

 

Bernstein-Vazirani Algorithm 
(the non-recursive) Bernstein-Vazirani Algorithm [BV97],  

no exponential speed up compared to the classical algorithm 

but a polynomial one. 

Given: A function with n bit strings as input and 

one bit as output (i.e. Given an oracle access to) 

   
and a Promise: That the function is of the form 

                  

                                  

               

                              

                                      

                            



 
Problem: Find the n bit string S 

,where s is a secret string that the algorithm is trying 

to learn. 

Classically brute force and try n inputs, i.e. 

f(100:::0n) = s1 

f(010:::0n) = s2 

. . 

f(000:::1) = sn 

one query in quantum computation: 

 
The states at different level are 



 

 

 
Here we assume that the such an oracle exist without 

worrying about the practical possibilities. 
Example: with s=101 and with phase oracle built using an XOR 

oracle. 

 
Here Bernstein-Vazirani algorithm only has polynomial speed 

up. But a modified version of this algorithm, Recursive 

Bernstein-Vazirani Algorithm has exponential speed up.  

Usually algorithms assume that the oracles can be implemented, 

but in many cases implementing oracles can be difficult.  

So we assume oracle is a given black box. 



 

 

  
 

Big-O only stresses on bounding above. It does not bother about how far above. So an 
algorithm has infinite functions as its Big-O complexity. The most informative of them is the one 
that is immediately above, otherwise every algo is O(infinity). 

Now with the definition being clear, we can easily say that Merge Sort is O(nLog(n)) as well as 
O(n2) 

 

Similar to big O         ,     O     Ω                      computer science to describe the 

performance or complexity of an algorithm  I                    Ω      ,                       

n, the running time is at least k⋅f(n) for some constant k 



 
 

 

 

 


